## DEFINITIONS

## Graph Terminology

- A graph $G$ consists of two finite sets: a set $V(G)$ of vertices and a set $E(G)$ of edges, where each edge is associated with a set consisting of either one or two vertices called its endpoints.
- The correspondence from edges to the set of endpoints is called the edgeendpoint function.
- An edge with just one endpoint is called a loop.
- Two distinct edges with the same set of endpoints are said to be parallel.
- An edge is said to connect to its endpoint; two vertices that are connected by an edge are called adjacent; and a vertex that is an endpoint of a loop is said to be adjacent to itself.
- An edge is said to be incident on each of its endpoints, and two edges incident on the same endpoint are called adjacent.
- A vertex on which no edges are incident is called isolated.
- A graph with no vertices is called empty, and one with at least one vertex is called non-empty. I.e. $G$ is empty iff $V(G)=\varnothing$


## Directed Graphs

- A directed graph, or digraph $G$, consists of two finite sets: a set $V(G)$ of vertices and a set $D(G)$ of directed edges, where each is associated with an ordered pair of vertices called its endpoints.
- If edge $e$ is associated with the pair $(v, w)$ of vertices, then $e$ is said to be the (directed) edge from $v$ to $w$.


## Subgraphs

- A graph $H$ is said to be a subgraph of a graph $G$ if and only if

$$
V(H) \subseteq V(G) \text { and } E(H) \subseteq E(G)
$$

## SIMPLE GRAPHS

## Simple Graphs

- A simple graph is a graph that does not have any loops or parallel edges.
- In a simple undirected graph, an edge with endpoints $v$ and $w$ is denoted $\{v, w\}$.


## Complete Graphs

- Let $n$ be a positive integer. A complete graph on $n$ vertices, denoted $\mathrm{K}_{\mathrm{n}}$, is a simple graph with $n$ vertices $v_{1}, v_{2}, \ldots, v_{n}$, whose set of edges contains exactly one edge for each pair of distinct vertices.

Graph complements
If $G$ is a simple graph, the complement of $G$, denoted $G^{\prime}$ is the simple graph defined as follows:

- $\quad V\left(G^{\prime}\right)=V(G)$
- $E(G) \cap E\left(G^{\prime}\right)=\varnothing$
- The graph whose vertex set is $V(G)$ and set of edges is $E(G) \cup E\left(G^{\prime}\right)$ is complete.


## DEGREE OF GRAPHS

## Definitions

Let $G$ be a graph

- Let $v$ be a vertex of $G$. The degree of $v$, denoted $\operatorname{deg}(v)$, equals the number of edges that are incident on $v$, with an edge that is a loop counted twice.
- The total degree of $G$ is the sum of the degree of all the vertices of $G$

Handshake Theorem

- Handshake Theorem:

For any graph $G$,
the total degree of $G$ equals twice the number of edges of $G$.
I.e. if $V(G)=\left\{v_{l}, v_{2}, \ldots, v_{n}\right\}$, where $n$ is a non-negative integer, then

Total degree of $G=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\ldots+\operatorname{deg}\left(v_{n}\right)$
$=2$ (the number of edges of $G$ )

- Corollary: The total degree of a graph is even
- Corollary: In any graph, the number of vertices of odd degree is even.

